

Relations

Chapter 9

Chapter Summary

- ❖ Relations and Their Properties
- ❖ n -ary Relations and Their Applications (*not currently included in overheads*)
- ❖ Representing Relations
- ❖ Closures of Relations (*not currently included in overheads*)
- ❖ Equivalence Relations
- ❖ Partial Orderings

Relations and Their Properties

Section 9.1

Section Summary

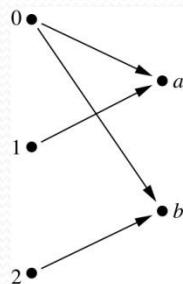
- ❖ Relations and Functions
- ❖ Properties of Relations
 - ❖ Reflexive Relations
 - ❖ Symmetric and Antisymmetric Relations
 - ❖ Transitive Relations
- ❖ Combining Relations

Binary Relations

Definition: A *binary relation* R from a set A to a set B is a subset $R \subseteq A \times B$.

Example:

- Let $A = \{0,1,2\}$ and $B = \{a,b\}$
- $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B .
- We can represent relations from a set A to a set B graphically or using a table:



R	a	b
0	×	×
1	×	
2		×

Relations are more general than functions. A function is a relation where exactly one element of B is related to each element of A .

Binary Relation on a Set

Definition: A binary relation R on a set A is a subset of $A \times A$ or a relation from A to A .

Example:

- Suppose that $A = \{a, b, c\}$. Then $R = \{(a, a), (a, b), (a, c)\}$ is a relation on A .
- Let $A = \{1, 2, 3, 4\}$. The ordered pairs in the relation $R = \{(a, b) \mid a \text{ divides } b\}$ are $(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3)$, and $(4, 4)$.

Binary Relation on a Set (cont.)

Question: How many relations are there on a set A ?

Solution: Because a relation on A is the same thing as a subset of $A \times A$, we count the subsets of $A \times A$. Since $A \times A$ has n^2 elements when A has n elements, and a set with m elements has 2^m subsets, there are $2^{|A|^2}$ subsets of $A \times A$. Therefore, there are $2^{|A|^2}$ relations on a set A .

Binary Relations on a Set (cont.)

Example: Consider these relations on the set of integers:

$$R_1 = \{(a,b) \mid a \leq b\},$$

$$R_4 = \{(a,b) \mid a = b\},$$

$$R_2 = \{(a,b) \mid a > b\},$$

$$R_5 = \{(a,b) \mid a = b + 1\},$$

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},$$

$$R_6 = \{(a,b) \mid a + b \leq 3\}.$$

Note that these relations are on an infinite set and each of these relations is an infinite set.

Which of these relations contain each of the pairs

$$(1,1), (1, 2), (2, 1), (1, -1), \text{ and } (2, 2)?$$

Solution: Checking the conditions that define each relation, we see that the pair $(1,1)$ is in R_1 , R_3 , R_4 , and R_6 : $(1,2)$ is in R_1 and R_6 : $(2,1)$ is in R_2 , R_5 , and R_6 : $(1, -1)$ is in R_2 , R_3 , and R_6 : $(2,2)$ is in R_1 , R_3 , and R_4 .

Reflexive Relations

Definition: R is *reflexive* iff $(a,a) \in R$ for every element $a \in A$. Written symbolically, R is reflexive if and only if

$$\forall x[x \in U \rightarrow (x,x) \in R]$$

Example: The following relations on the integers are reflexive:

$$R_1 = \{(a,b) \mid a \leq b\},$$

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},$$

$$R_4 = \{(a,b) \mid a = b\}.$$

If $A = \emptyset$ then the empty relation is reflexive vacuously. That is the empty relation on an empty set is reflexive!

The following relations are not reflexive:

$$R_2 = \{(a,b) \mid a > b\} \text{ (note that } 3 \not> 3\text{)},$$

$$R_5 = \{(a,b) \mid a = b + 1\} \text{ (note that } 3 \neq 3 + 1\text{)},$$

$$R_6 = \{(a,b) \mid a + b \leq 3\} \text{ (note that } 4 + 4 \not\leq 3\text{)}.$$

Symmetric Relations

Definition: R is symmetric iff $(b,a) \in R$ whenever $(a,b) \in R$ for all $a,b \in A$. Written symbolically, R is symmetric if and only if

$$\forall x \forall y [(x,y) \in R \rightarrow (y,x) \in R]$$

Example: The following relations on the integers are symmetric:

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},$$

$$R_4 = \{(a,b) \mid a = b\},$$

$$R_6 = \{(a,b) \mid a + b \leq 3\}.$$

The following are not symmetric:

$$R_1 = \{(a,b) \mid a \leq b\} \text{ (note that } 3 \leq 4, \text{ but } 4 \not\leq 3\text{)},$$

$$R_2 = \{(a,b) \mid a > b\} \text{ (note that } 4 > 3, \text{ but } 3 \not> 4\text{)},$$

$$R_5 = \{(a,b) \mid a = b + 1\} \text{ (note that } 4 = 3 + 1, \text{ but } 3 \neq 4 + 1\text{)}.$$

Antisymmetric Relations

Definition: A relation R on a set A such that for all $a, b \in A$ if $(a, b) \in R$ and $(b, a) \in R$, then $a = b$ is called *antisymmetric*.

Written symbolically, R is antisymmetric if and only if

$$\forall x \forall y [(x, y) \in R \wedge (y, x) \in R \rightarrow x = y]$$

Example: The following relations on the integers are antisymmetric:

$$R_1 = \{(a, b) \mid a \leq b\},$$

For any integer, if $a \leq b$ and $a \leq b$, then $a = b$.

$$R_2 = \{(a, b) \mid a > b\},$$

$$R_4 = \{(a, b) \mid a = b\},$$

$$R_5 = \{(a, b) \mid a = b + 1\}.$$

The following relations are not antisymmetric:

$$R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$$

(note that both $(1, -1)$ and $(-1, 1)$ belong to R_3),

$$R_6 = \{(a, b) \mid a + b \leq 3\}$$
 (note that both $(1, 2)$ and $(2, 1)$ belong to R_6).

Transitive Relations

Definition: A relation R on a set A is called transitive if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$. Written symbolically, R is transitive if and only if

$$\forall x \forall y \forall z [(x,y) \in R \wedge (y,z) \in R \rightarrow (x,z) \in R]$$

Example: The following relations on the integers are transitive:

$$R_1 = \{(a,b) \mid a \leq b\},$$

For every integer, $a \leq b$ and $b \leq c$, then $b \leq c$.

$$R_2 = \{(a,b) \mid a > b\},$$

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},$$

$$R_4 = \{(a,b) \mid a = b\}.$$

The following are not transitive:

$R_5 = \{(a,b) \mid a = b + 1\}$ (note that both $(3,2)$ and $(4,3)$ belong to R_5 , but not $(3,3)$),

$R_6 = \{(a,b) \mid a + b \leq 3\}$ (note that both $(2,1)$ and $(1,2)$ belong to R_6 , but not $(2,2)$).

Combining Relations

Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, and $R_2 - R_1$.

Example: Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined using basic set operations to form new relations:

$$R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$$

$$R_1 \cap R_2 = \{(1,1)\} \quad R_1 - R_2 = \{(2,2),(3,3)\}$$

$$R_2 - R_1 = \{(1,2),(1,3),(1,4)\}$$

Composition

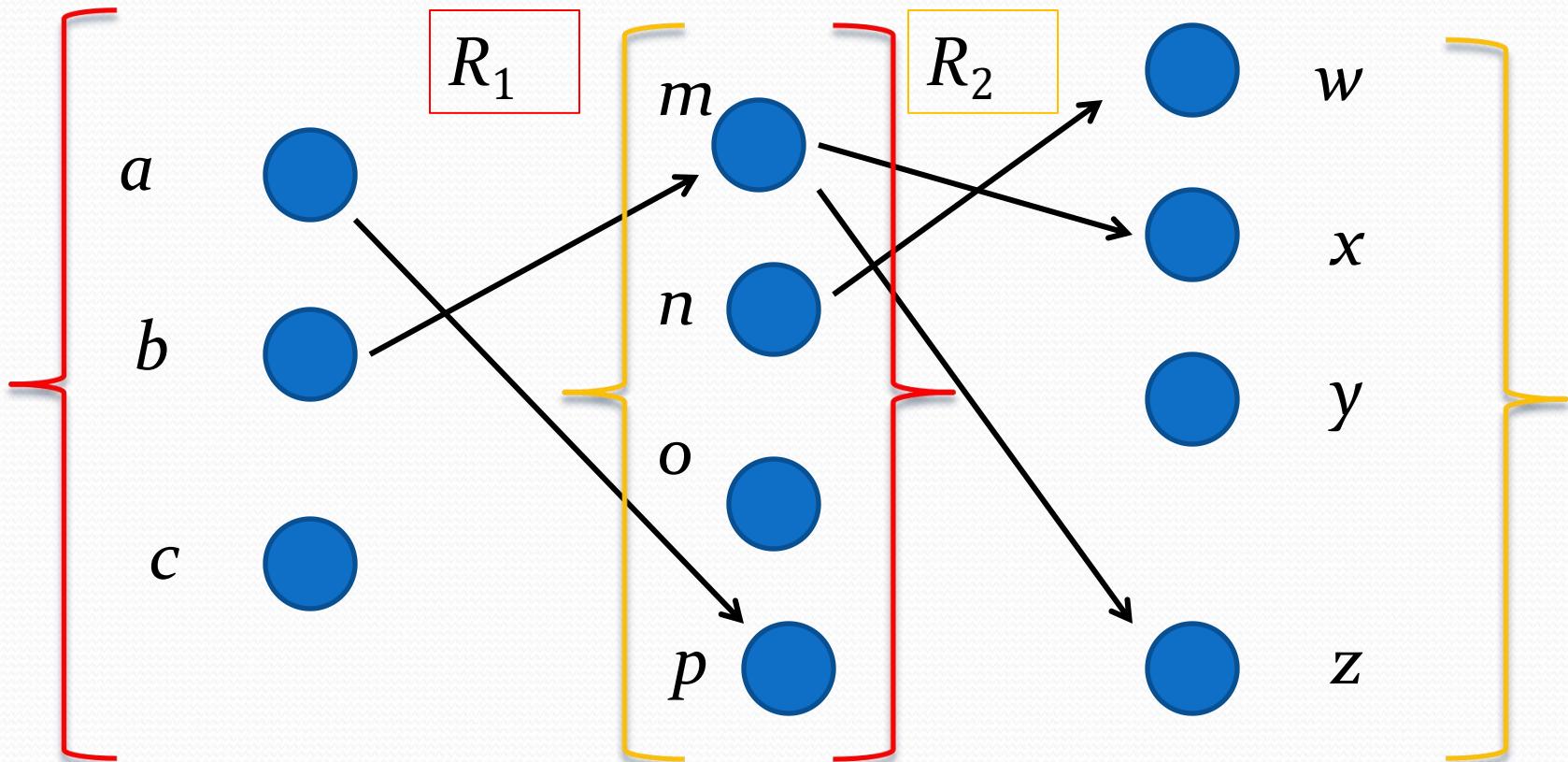
Definition: Suppose

- R_1 is a relation from a set A to a set B .
- R_2 is a relation from B to a set C .

Then the *composition* (or *composite*) of R_2 with R_1 , is a relation from A to C where

- if (x,y) is a member of R_1 and (y,z) is a member of R_2 , then (x,z) is a member of $R_2 \circ R_1$.

Representing the Composition of a Relation



$$R_2 \circ R_1 = \{(b, x), (b, z)\}$$

Powers of a Relation

Definition: Let R be a binary relation on A . Then the powers R^n of the relation R can be defined inductively by:

❖ Basis Step: $R^1 = R$

❖ Inductive Step: $R^{n+1} = R^n \circ R$

(see the slides for Section 9.3 for further insights)

The powers of a transitive relation are subsets of the relation. This is established by the following theorem:

Theorem 1: The relation R on a set A is transitive iff $R^n \subseteq R$ for $n = 1, 2, 3, \dots$

(see the text for a proof via mathematical induction)

Representing Relations

Section 9.3

Section Summary

- ❖ Representing Relations using Matrices
- ❖ Representing Relations using Digraphs

Representing Relations Using Matrices

- A relation between finite sets can be represented using a zero-one matrix.
- Suppose R is a relation from $A = \{a_1, a_2, \dots, a_m\}$ to $B = \{b_1, b_2, \dots, b_n\}$.
 - The elements of the two sets can be listed in any particular arbitrary order. When $A = B$, we use the same ordering.
- The relation R is represented by the matrix $M_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R, \\ 0 & \text{if } (a_i, b_j) \notin R. \end{cases}$$

- The matrix representing R has a 1 as its (i, j) entry when a_i is related to b_j and a 0 if a_i is not related to b_j .

Examples of Representing Relations Using Matrices

Example 1: Suppose that $A = \{1,2,3\}$ and $B = \{1,2\}$. Let R be the relation from A to B containing (a,b) if $a \in A$, $b \in B$, and $a > b$. What is the matrix representing R (assuming the ordering of elements is the same as the increasing numerical order)?

Solution: Because $R = \{(2,1), (3,1), (3,2)\}$, the matrix is

$$M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Examples of Representing Relations Using Matrices (cont.)

Example 2: Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation R represented by the matrix

$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} ?$$

Solution: Because R consists of those ordered pairs (a_i, b_j) with $m_{ij} = 1$, it follows that:

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5)\}.$$

Matrices of Relations on Sets

- If R is a reflexive relation, all the elements on the main diagonal of M_R are equal to 1.

$$\begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

- R is a symmetric relation, if and only if $m_{ij} = 1$ whenever $m_{ji} = 1$. R is an antisymmetric relation, if and only if $m_{ij} = 0$ or $m_{ji} = 0$ when $i \neq j$.

$$\begin{bmatrix} & & 1 & \\ & & 0 & \\ 1 & & & \\ & 0 & & \end{bmatrix}$$

(a) Symmetric

$$\begin{bmatrix} & & 1 & 0 & \\ & & 0 & & \\ 0 & & & & \\ 0 & & & 1 & \\ & & & & 0 \end{bmatrix}$$

(b) Antisymmetric

Example of a Relation on a Set

Example 3: Suppose that the relation R on a set is represented by the matrix

$$M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Is R reflexive, symmetric, and/or antisymmetric?

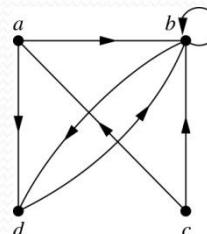
Solution: Because all the diagonal elements are equal to 1, R is reflexive. Because M_R is symmetric, R is symmetric and not antisymmetric because both $m_{1,2}$ and $m_{2,1}$ are 1 (but $1 \neq 2$).

Representing Relations Using Digraphs

Definition: A *directed graph*, or *digraph*, consists of a set V of *vertices* (or *nodes*) together with a set E of ordered pairs of elements of V called *edges* (or *arcs*). The vertex a is called the *initial vertex* of the edge (a,b) , and the vertex b is called the *terminal vertex* of this edge.

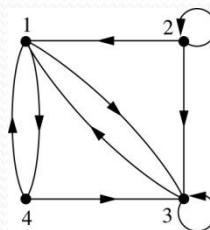
❖ An edge of the form (a,a) is called a *loop*.

Example 7: A drawing of the directed graph with vertices a , b , c , and d , and edges (a, b) , (a, d) , (b, b) , (b, d) , (c, a) , (c, b) , and (d, b) is shown here.



Examples of Digraphs Representing Relations

Example 8: What are the ordered pairs in the relation represented by this directed graph?

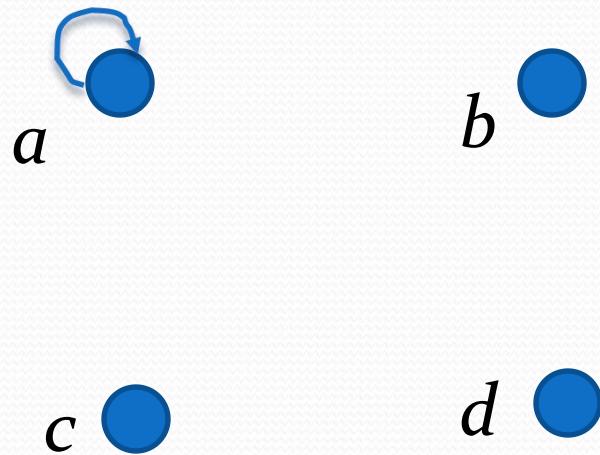


Solution: The ordered pairs in the relation are $(1, 3)$, $(1, 4)$, $(2, 1)$, $(2, 2)$, $(2, 3)$, $(3, 1)$, $(3, 3)$, $(4, 1)$, and $(4, 3)$

Determining which Properties a Relation has from its Digraph

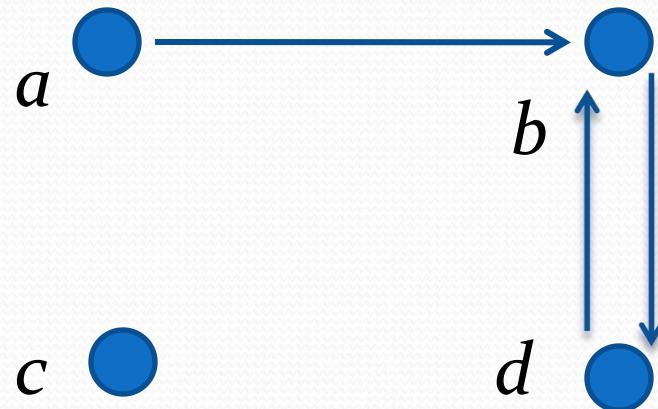
- ❖ *Reflexivity*: A loop must be present at all vertices in the graph.
- ❖ *Symmetry*: If (x,y) is an edge, then so is (y,x) .
- ❖ *Antisymmetry*: If (x,y) with $x \neq y$ is an edge, then (y,x) is not an edge.
- ❖ *Transitivity*: If (x,y) and (y,z) are edges, then so is (x,z) .

Determining which Properties a Relation has from its Digraph – Example 1



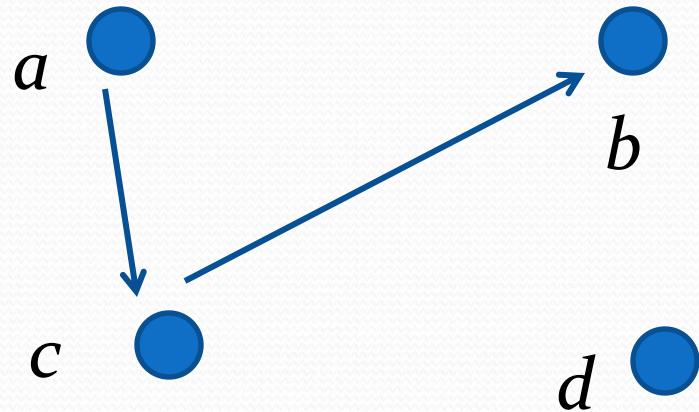
- *Reflexive*? No, not every vertex has a loop
- *Symmetric*? Yes (trivially), there is no edge from one vertex to another
- *Antisymmetric*? Yes (trivially), there is no edge from one vertex to another
- *Transitive*? Yes, (trivially) since there is no edge from one vertex to another

Determining which Properties a Relation has from its Digraph – Example 2



- *Reflexive*? No, there are no loops
- *Symmetric*? No, there is an edge from a to b , but not from b to a
- *Antisymmetric*? No, there is an edge from d to b and b to d
- *Transitive*? No, there are edges from a to c and from c to b , but there is no edge from a to d

Determining which Properties a Relation has from its Digraph – Example 3



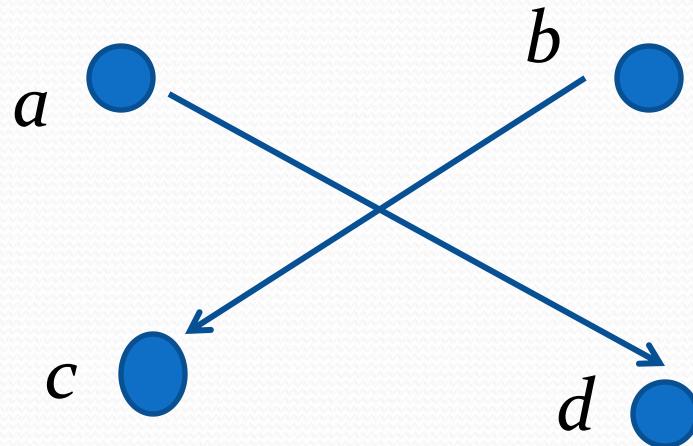
Reflexive? No, there are no loops

Symmetric? No, for example, there is no edge from c to a

Antisymmetric? Yes, whenever there is an edge from one vertex to another, there is not one going back

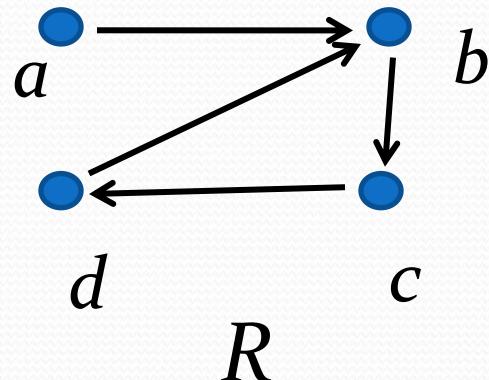
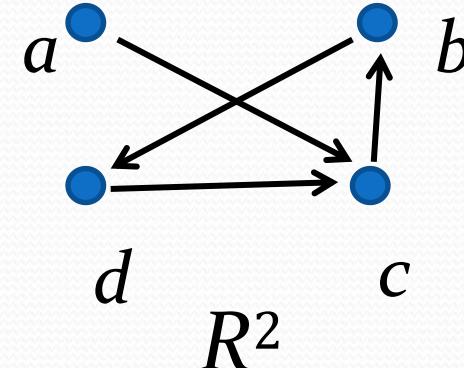
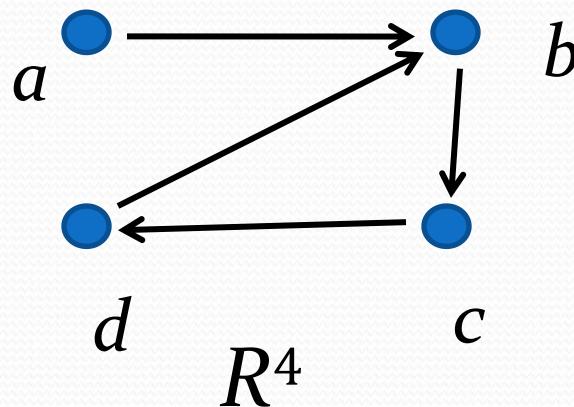
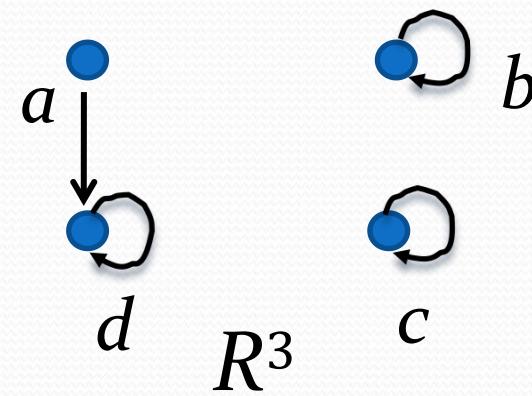
Transitive? No, there is no edge from a to b

Determining which Properties a Relation has from its Digraph – Example 4



- *Reflexive*? No, there are no loops
- *Symmetric*? No, for example, there is no edge from d to a
- *Antisymmetric*? Yes, whenever there is an edge from one vertex to another, there is not one going back
- *Transitive*? Yes (trivially), there are no two edges where the first edge ends at the vertex where the second edge begins

Example of the Powers of a Relation



The pair (x,y) is in R^n if there is a path of length n from x to y in R (following the direction of the arrows).